Stability of Radial Symmetry for a Monge-ampère Overdetermined Problem

نویسنده

  • B. BRANDOLINI
چکیده

Recently, following a new approach, the symmetry of the solutions to overdetermined problems has been established for a class of Hessian type operators. In this paper we prove that the radial solution of the overdetermined Dirichlet problem for the Monge-Ampère equation is stable under suitable perturbations of the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator

where B = {x ∈ Rn : |x| < } is the unit ball in Rn and Du = ( ∂u ∂xi∂xj ) is the Hessian of u, λ is a nonnegative parameter and f : R→ R is a continuous function. The study of problem (.) in general domains of Rn may be found in [, ]. Kutev [] investigated the existence of strictly convex radial solutions of problem (.) when f (u) = up. Delanoë [] treated the existence of convex radi...

متن کامل

Stability of Bounded Solutions for Degenerate Complex Monge-Ampère Equations

We show a stability estimate for the degenerate complex Monge-Ampère operator that generalizes a result of Ko lodziej [11]. In particular, we obtain the optimal stability exponent and also treat the case when the right hand side is a general Borel measure satisfying certain regularity conditions. Moreover our result holds for functions plurisubharmonic with respect to a big form generalizing th...

متن کامل

Continuity of the Complex Monge-Ampère Operator on Compact Kähler Manifolds

We prove several approximation theorems of the complex Monge-Ampère operator on a compact Kähler manifold. As an application we give a simple proof of a recent result of Guedj and Zeriahi on a complete description of the range of the complex Monge-Ampère operator in E(X,ω), which is the class of ω-plurisubharmonic functions with vanishing complex Monge-Ampère mass on all pluripolar sets. We als...

متن کامل

On Self-similar Blow-up in Evolution Equations of Monge–ampère Type: a View from Reaction-diffusion Theory

We use techniques from reaction-diffusion theory to study the blow-up and existence of solutions of the parabolic Monge–Ampère equation with power source, with the following basic 2D model 0.1 (0.1) ut = −|Du|+ |u|u in R × R+, where in two-dimensions |D2u| = uxxuyy − (uxy) and p > 1 is a fixed exponent. For a class of “dominated concave” and compactly supported radial initial data u0(x) ≥ 0, th...

متن کامل

Second Order Stability for the Monge-ampère Equation and Strong Sobolev Convergence of Optimal Transport Maps

The aim of this note is to show that Alexandrov solutions of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, converge strongly in W 2,1 loc if their right hand side converge strongly in Lloc. As a corollary we deduce strong W 1,1 loc stability of optimal transport maps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007